
MultiTune: Adaptive Integration
of Multiple Fine-Tuning Models

for Image Classification

Yu Wang(B), Jo Plested, and Tom Gedeon

Research School of Computer Science, Australian National University,
Canberra, Australia

{yu.wang1,jo.plested,tom.gedeon}@anu.edu.au

Abstract. Transfer learning has been widely used as a deep learning
technique to solve computer vision related problems, especially when
the problem is image classification employing Convolutional Neural Net-
works (CNN). In this paper, a novel transfer learning approach that can
adaptively integrate multiple models with different fine-tuning settings is
proposed, which is denoted as MultiTune. To evaluate the performance
of MultiTune, we compare it to SpotTune, a state-of-the-art transfer
learning technique. Two image datasets from the Visual Decathlon Chal-
lenge are used to evaluate the performance of MultiTune. The FGVC-
Aircraft dataset is a fine-grained task and the CIFAR100 dataset is a
more general task. Results obtained in this paper show that MultiTune
outperforms SpotTune on both tasks. We also evaluate MultiTune on a
range of target datasets with smaller numbers of images per class. Mul-
tiTune outperforms SpotTune on most of these smaller-sized datasets as
well. MultiTune is also less computational than SpotTune and requires
less time for training for each dataset used in this paper.

Keywords: Transfer learning · Image classification · Convolutional
neural networks

1 Introduction

Modern convolutional neural networks, such as AlexNet [7], VGG [12] and
ResNet [5] have been proven to be very successful, and able to achieve extraor-
dinary performance on well-known large-scale images datasets, for instance Ima-
geNet [3]. However, due to the large amount of data and limitation of computa-
tion, it is usually hard to train a convolutional neural network on a large dataset
from scratch. Transfer learning has been introduced to mitigate this issue.

Common machine learning algorithms are often designed to solve single and
isolated tasks. However, the study of transfer learning aims to develop methods
to transfer knowledge learnt from one or more source tasks and apply this knowl-
edge to improve the learning process in a different but related target task [13].
There are two important concepts frequently used in transfer learning, which
c© Springer Nature Switzerland AG 2020
H. Yang et al. (Eds.): ICONIP 2020, CCIS 1332, pp. 488–496, 2020.
https://doi.org/10.1007/978-3-030-63820-7_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63820-7_56&domain=pdf
https://doi.org/10.1007/978-3-030-63820-7_56

MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for IC 489

are freezing and fine-tuning. Freezing, or feature extraction, means to freeze the
weights that are learnt from the source task and only update the weights in the
last classification layer [2]. The frozen weights will act as a feature extractor
to solve the target task. Fine-tuning is the opposite of freezing. It is performed
where all or most of the weights learnt from the source task are retrained and
updated to fit the target task. These pre-trained weights act as a regularizer
that prevents overfitting during the learning process of the target task [1].

In this paper, we propose a novel technique that can be used in transfer
learning to enable the adaptive integration of multiple fine-tuning models with
different fine-tuning settings. It is denoted as MultiTune and will be mentioned
by using this name in this paper.

2 Related Work

2.1 Transferability

There have been numerous researches studying the transferability of features in
deep neural networks. One of the most thorough researches was done by Yosinski
et al. [14]. They discussed the transferability of features when using convolutional
neural networks. It is sated in their paper that features on the first layer seems to
occur regardless of the exact loss function and natural image dataset, which can
be considered as ‘general’. The features on the last layer depend largely on the
dataset and task, which can be considered as ‘specific’. Their study quantified
to which a particular layer is general or specific and found that even features
transferred from distant tasks are better than random weights.

It is found that fine-tuning the transferred weights has better performance
than freezing the transferred weights, in both cases when the source dataset is
highly related to the target dataset and when the source dataset is not so related
to the target dataset [6,9,14]. It is a common practice used in image classification
to pre-train the model on the ImageNet [3] dataset. Then the learnt weights
are transferred to the target dataset and fine-tuned during training. It has been
shown that image classification by using this approach can achieve extraordinary
results on different target datasets [6].

2.2 Adaptive Fine-Tuning: SpotTune

SpotTune is an adaptive fine-tuning method, which is able to determine which
layers to be frozen and which layers to be fine-tuned per training example. The
adaptive fine-tuning is achieved by training a policy network together with two
parallel CNN models. One of the CNN models has all the layers to be frozen.
The other CNN model has all its layers to be fine-tuned. The policy network
outputs a decision vector containing 0 or 1 for each layer, where 0 means the
image will go through the frozen layer, and 1 means the image will go through
the fine-tuned layer. As a result, the optimal route of an image in terms of
frozen or fine-tuning can be determined [4]. SpotTune could be considered as a

490 Y. Wang et al.

state-of-the-art technique of transfer learning that achieved the highest score on
the Visual Decathlon datasets [10] in 2019. It is used as a baseline to evaluate
the performance of MultiTune proposed in this paper. Different to their work,
MultiTune proposed by us involves two fine-tuning models with different settings
instead of one freezing model and one fine-tuning model. Also, MultiTune does
not contain a policy network to generate the routing decision, and therefore is
less computational.

2.3 L2-SP Regularization

In transfer learning, it is assumed that the pre-trained model extracts generic
features. These generic features are then fine-tuned to be more specific to fit
the target task if fine-tuning is used. Thus, when using fine-tuning to solve a
related target task, the neural network is initialized with pre-trained parameters
(e.g. weights, bias) learnt from source task. However, it is found that some of
these parameters may be tuned very far away from their initial values during the
process of fine-tuning. This may cause significant losses of the initial knowledge
transferred from the source task which is assumed to be relevant to the target
task [8]. Li et al. proposed a novel type of regularization to reduce losses of the
initially transferred knowledge. The pre-trained model is not only used as the
starting point of the fine-tuning process but also used as the reference in the
penalty to encode an explicit inductive bias. This novel type of regularization
is called L2-SP regularization with SP referring to Starting Point of the fine-
tuning process. Their results showed that L2-SP is much more effective than the
standard L2 penalty that is commonly used in fine-tuning [8]. It can prevent
overfitting and retain the knowledge learnt from the source task. So, the L2-SP
is used as the regularizer when training the networks.

3 Proposed Approach

3.1 Network Architecture

The CNN architecture used in this paper is a type of ResNet with 26 layers,
which is denoted as ResNet-26 [11]. There are 3 macro blocks of convolutional
layers in this CNN. Each block has 64, 128, 256 output feature channels, respec-
tively. Also, each macro block contains 4 residual blocks and every residual block
consists of 2 convolutional layers with 3 × 3 filters and shortcut connection that
usually used in ResNet. Average pooling with a stride of 2 is used to perform the
downsampling and ReLU layers are used as the activation layers. It also contains
a convolutional layer at the beginning and a fully connected layer at the end,
which makes the total number of layers in this architecture to be 26.

3.2 MultiTune Implementation

The MultiTune is implemented by adding a single-layer neural network after the
convolutional layers in the last block, which replaces the last fully connected

MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for IC 491

Fig. 1. Visualization of MultiTune.

Table 1. Settings of the two fine-tuning models.

Model Reinitialization Learning rate Learning rate
decay

LR decay rate

Fine-tuning A Last block 0.1 [20, 50, 80] 0.1

Fine-tuning B Last block 0.01 for last
block, 0.1 for
others

[20, 50, 80] 0.1

layer. This single fully connected layer is denoted as MultiTune layer here. In
detail, the features extracted by the two ResNet-26 models after the last blocks
are concatenated and then pass the MultiTune layer to be classified. Theoreti-
cally, the MultiTune layer should determine which features to take from these
two different fine-tuning models. The MultiTune model proposed here can be
expressed in Eq. 1, where Z represents the output of the MultiTune layer, W
represents the weights of the MultiTune layer, X1 and X2 are the outputs after
the last convolutional blocks of the first and second fine-tuning models, and η is
a factor that controls what portion of each model to be used in the MultiTune
layer. The presence of η enables an option to allocate more weights to one of the
models. This factor η is set to be 0.5 here, which means these two ResNet-26
models are treated equally. Figure 1 is a visualization of MultiTune.

Z = W ∗ concat[ηX1; (1 − η)X2] (1)

These two CNN models used here have different fine-tuning settings. For conve-
nience, they are denoted as Fine-Tuning A and Fine-Tuning B. The settings of
these two models are listed in the Table 1.

4 Experiments

4.1 Datasets

The datasets used in this paper are taken from the Visual Decathlon challenge.
It contains 10 datasets from multiple visual domains. To reduce the computation
burden of the evaluation process, the images in the Visual Decathlon Datasets
are resized isotropically with a shorter side of 72 pixels [10]. Due to the com-
putational limitations, it is hard to use all these 10 datasets to evaluate the
performance of MultiTune. Inspired by Li et al.’s paper where they test their
method with different target domains, the same approach is used for the selection

492 Y. Wang et al.

of datasets to evaluate the performance of the model [8]. It is hypothesized that
the method outlined in this paper should improve performance in both generic
target image datasets and specific target image datasets. So, FGVC-Aircraft and
CIFAR100 are used, which represents a more specific and a more generic dataset,
respectively. Table 2 summarizes the details of these two datasets.

Table 2. Details of FGVC-Aircraft and CIFAR100 datasets

Dataset Description Mean Standard
deviation

FGVC-Aircraft 10,000 images of aircraft, 100
images per class. Training,
validation and testing with around
3,333 images for each

[0.47983041,
0.51074066,
0.53437998]

[0.21070221,
0.20508901,
0.23729657]

CIFAR100 60,000 colour images for 100 object
categories. 40,000 for training,
10,000 for validation, 10,000 for
testing

[0.50705882,
0.48666667,
0.44078431]

[0.26745098,
0.25647059,
0.27607843]

4.2 Training of the Network

As SpotTune will be taken as the baseline in this paper, most of the settings used
in MultiTune are set the same as SpotTune to keep consistency. Both of these
methods are run with 110 epochs without early stopping. Cross Entropy loss is
used because the target task is image classification. And, the optimizer used here
is SGD with a momentum of 0.9. SpotTune uses a learning rate of 0.1 for the
CNN models, and a learning rate of 0.01 for the policy network. The learning
rate decay is set after the 40th, 60th and 80th epoch [4]. MultiTune does not
include a policy network, and has different learning rates for each CNN model.
The learning rate decay is also set to be different from SpotTune. Also, L2-SP
regularization is used in MultiTune. Defining the weights of layers except for the
last one as w and the weights of the last layer as wS̄ , the L2-SP regularizer can
be shown in Eq. 2 [8]. α and β in this equation are the factors that control the
strength of the penalty, which are both set to 0.01 [8].

Ω(w) =
α

2
||w − w0||22 +

β

2
||wS̄ ||22 (2)

The Cross Entropy loss is modified to add this L2-SP regularizer. Equation 3
shows the modified CE loss with L2-SP regularizer, where ti is the ground truth
and yi is CNN’s output for each class i in the dataset C.

L(y, t) = −
C∑

i

tilog(yi) +
α

2

W∑

i

||wi − w0
i ||22 +

β

2
||wS̄ ||22 (3)

MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for IC 493

5 Results and Analysis

The results of the SpotTune are taken as the baseline in this paper. To let
the model see more images for better training and testing, the original code
of SpotTune includes the validation set in the training set for each dataset.
This means the model is trained on this larger combined training set but still
evaluated by using the validation set which is a part of the training set. As a
result, the validation accuracy reaches a large figure, almost 100%, after tens of
epochs. It is very hard to evaluate the performance of the model in this case.

Table 3. Results of SpotTune and MultiTune on Aircraft and CIFAR100.

Dataset SpotTune MultiTune

Validation
accuracy

Total time
used (mins)

Validation
accuracy

Total time
used (mins)

Aircraft 55.15% 47.49 59.59% 38.19

Aircraft-20 45.60% 29.15 47.85% 22.50

Aircraft-15 39.20% 21.84 40.73% 16.88

Aircraft-10 30.70% 14.67 29.90% 11.51

Aircraft-5 17.40% 7.57 18.80% 5.91

CIFAR100 78.45% 454.80 79.31% 321.37

CIFAR100-20 59.15% 34.60 59.00% 22.80

CIFAR100-15 55.73% 23.74 56.40% 16.87

CIFAR100-10 49.10% 16.52 49.10% 11.37

CIFAR100-5 33.40% 8.96 29.20% 5.86

To address this issue, the validation set is removed from the training set when
loading the datasets. Then the model can be trained only on the training set
and evaluated by the unseen validation set.

The figures of results shown in Guo et al.’s paper are testing results obtained
by submitting the results to the Visual Decathlon Challenge website [4]. Because
only two datasets of the Visual Decathlon Datasets are used here, the results of
them are not submitted to the website. The validation results instead of testing
results are used to compare these methods.

The validation accuracy and training time of SpotTune and MultiTune on
Aircraft and CIFAR100 datasets are listed in Table 3. Aircraft-20 means the
smaller-sized Aircraft dataset with 20 images per class. Figure 2 shows the val-
idation accuracy versus the number of epochs of SpotTune and MultiTune on
these two datasets. To distinguish the results, the validation accuracy of Spot-
Tune is illustrated by blue lines, the validation accuracy of MultiTune is shown
by red lines.

The validation accuracy of MultiTune is consistently higher than that of
SpotTune after 20 epochs, and the difference is around 4.5% for the Aircraft

494 Y. Wang et al.

(a) Validation Accuracy versus No. of
Epochs on Aircraft Dataset.

(b) Validation Accuracy versus No. of
Epochs on Smaller Aircraft Datasets.

(c) Validation Accuracy versus No. of
Epochs on CIFAR100 Dataset.

(d) Validation Accuracy versus No. of
Epochs on Smaller CIFAR100 Datasets.

Fig. 2. Validation accuracy versus the number of epochs of SpotTune and MultiTune
on aircraft, smaller aircraft, CIFAR100 and smaller CIFAR100 datasets. (Color figure
online)

dataset and around 1% for the CIFAR100 dataset. The obtained results indicate
that MultiTune has better performance than SpotTune on both a more specific
dataset (Aircraft) and a more generic dataset (CIFAR100) when running these
methods on the whole datasets. This higher performance achieved by MultiTune
is due to the integration of two different fine-tuning models. This integration
enables the model to extract more useful features from the image datasets. Reini-
tializing the last blocks lets the layers in the last blocks to learn from scratch,
so that the features learnt can be more specific to the target dataset. Adjusting
the learning rate in the last block of Fine-Tuning B reduces the update amount
in the last block and facilitates the model to find the global minimum. The total
training time is also taken as one of the considerations of the performance. As
shown in Table 3, the percentage of reduction in the total training time by using
MultiTune is 19.58% and 29.34% for Aircraft and CIFAR100.

Aircraft dataset has around 33 images per class, the number of images per
class is roughly reduced by 43% and 60% for Aircraft-20 and Aircraft-15. In these
two situations, the results of MultiTune are consistently better than SpotTune
after 20 epochs. The difference is around 2.3% and 1.5%, respectively. But, when
it comes to extremely small datasets, in the Aircraft-10 and Aircraft-5 datasets,

MultiTune: Adaptive Integration of Multiple Fine-Tuning Models for IC 495

the differences between these two methods are not so obvious. In Aircraft-10
and Aircraft-5, the number of images per class is roughly reduced by 70% and
85%. The inconspicuous differences in these two datasets may be due to the
extremely small size of datasets. The significantly reduced size makes the model
hard to learn enough knowledge to predict unseen data. It is clear in Fig. 2 that
the smaller sized CIFAR100 datasets follow a similar pattern.

6 Conclusion

A novel transfer learning technique denoted as MultiTune is proposed, which can
adaptively integrate multiple fine-tuning CNN models with different settings. It
has been applied to image classification with two image datasets taken from the
Visual Decathlon challenge. MultiTune is able to achieve a validation accuracy
of 59.59% on the Aircraft dataset, which is around 4.5% higher than the result
obtained by SpotTune. It outperforms SpotTune on the CIFAR100 dataset by
around 1%. In addition, MultiTune achieves higher performance than SpotTune
on most of the smaller-sized datasets. It also needs much less training time than
SpotTune on all the datasets used in this paper. The results outlined in this paper
indicate that the proposed MultiTune technique can improve the performance
of transfer learning on the image classification problem. This makes MultiTune
an excellent approach to be further adopted and applied in the fields of transfer
learning and tasks related to image classification.

References

1. Agrawal, P., Girshick, R., Malik, J.: Analyzing the performance of multilayer neural
networks for object recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.
(eds.) ECCV 2014. LNCS, vol. 8695, pp. 329–344. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-10584-0 22

2. Azizpour, H., Razavian, A.S., Sullivan, J., Maki, A., Carlsson, S.: Factors of trans-
ferability for a generic convnet representation. IEEE Trans. Pattern Anal. Mach.
Intell. 38(9), 1790–1802 (2016)

3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR 2009 (2009)

4. Guo, Y., Shi, H., Kumar, A., Grauman, K., Rosing, T., Feris, R.S.: SpotTune:
transfer learning through adaptive fine-tuning. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 4800–4809 (2019)

5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
CoRR. abs/1512.03385 (2015)

6. Kornblith, S., Shlens, J., Le, Q.V.: Do better imagenet models transfer better? In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2661–2671 (2019)

7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

8. Li, X., Grandvalet, Y., Davoine, F.: Explicit inductive bias for transfer learning
with convolutional networks. CoRR (2018)

https://doi.org/10.1007/978-3-319-10584-0_22
https://doi.org/10.1007/978-3-319-10584-0_22

496 Y. Wang et al.

9. Plested, J., Gedeon, T.: An analysis of the interaction between transfer learning
protocols in deep neural networks. In: Gedeon, T., Wong, K.W., Lee, M. (eds.)
ICONIP 2019. LNCS, vol. 11953, pp. 312–323. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-36708-4 26

10. Rebuffi, S., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. CoRR (2017)

11. Rebuffi, S., Bilen, H., Vedaldi, A.: Efficient parametrization of multi-domain deep
neural networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8119–8127 (2018)

12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. In: International Conference on Learning Representations
(2015)

13. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine
Learning Applications. IGI Global (2009)

14. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320–3328 (2014)

https://doi.org/10.1007/978-3-030-36708-4_26
https://doi.org/10.1007/978-3-030-36708-4_26

